Evidence for a role of Nav1.6 in facilitating increases in neuronal hyperexcitability during epileptogenesis.
نویسندگان
چکیده
During epileptogenesis a series of molecular and cellular events occur, culminating in an increase in neuronal excitability, leading to seizure initiation. The entorhinal cortex has been implicated in the generation of epileptic seizures in both humans and animal models of temporal lobe epilepsy. This hyperexcitability is due, in part, to proexcitatory changes in ion channel activity. Sodium channels play an important role in controlling neuronal excitability, and alterations in their activity could facilitate seizure initiation. We sought to investigate whether medial entorhinal cortex (mEC) layer II neurons become hyperexcitable and display proexcitatory behavior of Na channels during epileptogenesis. Experiments were conducted 7 days after electrical induction of status epilepticus (SE), a time point during the latent period of epileptogenesis and before the onset of seizures. mEC layer II stellate neurons from post-SE animals were hyperexcitable, eliciting action potentials at higher frequencies compared with control neurons. Na channel currents recorded from post-SE neurons revealed increases in Na current amplitudes, particularly persistent and resurgent currents, as well as depolarized shifts in inactivation parameters. Immunocytochemical studies revealed increases in voltage-gated Na (Nav) 1.6 isoform levels. The toxin 4,9-anhydro-tetrodotoxin, which has greater selectivity for Nav1.6 over other Na channel isoforms, suppressed neuronal hyperexcitability, reduced macroscopic Na currents, persistent and resurgent Na current densities, and abolished depolarized shifts in inactivation parameters in post-SE neurons. These studies support a potential role for Nav1.6 in facilitating the hyperexcitability of mEC layer II neurons during epileptogenesis.
منابع مشابه
Remarkable alterations of Nav1.6 in reactive astrogliosis during epileptogenesis
Voltage-gated sodium channels (VGSCs) play a vital role in controlling neuronal excitability. Nav1.6 is the most abundantly expressed VGSCs subtype in the adult central nervous system and has been found to contribute to facilitate the hyperexcitability of neurons after electrical induction of status epilepticus (SE). To clarify the exact expression patterns of Nav1.6 during epileptogenesis, we ...
متن کاملEvidence for a Role of Nav 1 . 6 in Facilitating Increases in Neuronal Hyper - excitability During 2 Epileptogenesis
Title Page 1 Evidence for a Role of Nav1.6 in Facilitating Increases in Neuronal Hyper-excitability During 2 Epileptogenesis. 3 4 Nicholas J. Hargus, Aradhya Nigam, Edward H. Bertram III, Manoj K. Patel 5 Departments of Anesthesiology and Neurology, Neuroscience Graduate Program University of 6 Virginia Health System, Charlottesville VA 22908. 7 8 Author Contribution: NJH, AN and MKP performed ...
متن کاملPumilio2-deficient mice show a predisposition for epilepsy
Epilepsy is a neurological disease that is caused by abnormal hypersynchronous activities of neuronal ensembles leading to recurrent and spontaneous seizures in human patients. Enhanced neuronal excitability and a high level of synchrony between neurons seem to trigger these spontaneous seizures. The molecular mechanisms, however, regarding the development of neuronal hyperexcitability and main...
متن کاملThe possible role of GABAA receptors and gephyrin in epileptogenesis
The term epileptogenesis refers to a dynamic alteration in neuronal excitability that promotes the appearance of spontaneous seizures. Temporal lobe epilepsy, the most common type of acquired epilepsy, often develops after an insult to the brain such as trauma, febrile seizures, encephalitis, or status epilepticus. During the pre-epileptic state (also referred as latent or silent period) there ...
متن کاملExpression of sodium channel α subunits 1.1, 1.2 and 1.6 in rat hippocampus after kainic acid-induced epilepsy
Voltage-gated Na(+) channels control neuronal excitability and are the primary target for the majority of anti-epileptic drugs. This study investigates the (sub)cellular expression patterns of three important brain-associated Na(+) channel α subunits: NaV1.1, NaV1.2 and NaV1.6 during epileptogenesis (induced by kainic acid) using time points that cover the period from induction to the chronic p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 110 5 شماره
صفحات -
تاریخ انتشار 2013